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Abstract

Objective: This study aimed to develop a predictive model using a random forest algorithm to

determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants

under 3 months with intestinal malrotation.

Methods: A machine learning model was used to predict postoperative adhesive small bowel

obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at

least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-

validation tuned and selected hyper-parameters for the random forest model. The model’s per-

formance was validated with 1000 bootstrap samples and assessed using receiver operating char-

acteristic (ROC) analysis, the area under the ROC curve (AUC), sensitivity, specificity, precision,

and F1 score.

Results: The random forest model demonstrated high diagnostic accuracy with an AUC of 0.960.

Significant predictors of ASBO included pre-operative white blood cell count (pre-WBC), mechani-

cal ventilation (MV) duration, surgery duration, and post-operative albumin levels (post-ALB). Par-

tial dependence plots showed non-linear relationships and threshold effects for these variables.

The model achieved high sensitivity (0.805) and specificity (0.952), along with excellent precision

(0.809) and a robust F1 score (0.799), indicating balanced recall and precision performance.

Conclusion: This study presents a machine learning model to accurately predict postoperative

ASBO in infants with intestinal malrotation. Demonstrating high accuracy and robustness, this

model shows great promise for enhancing clinical decision-making and patient outcomes in pediat-

ric surgery.
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Introduction

Intestinal malrotation is a congenital disorder characterized

by abnormal embryonic midgut development, resulting in

disrupted bowel rotation and fixation. This leads to anatomi-

cal abnormalities that increase the risk of complications

such as volvulus and obstruction. Approximately 1 in 500 live

births are affected by this condition,1-3 which is usually diag-

nosed during infancy or early childhood. The current stan-

dard treatment for intestinal malrotation is surgical

intervention, aiming to correct the anatomical abnormali-

ties and minimize the risk of complications. However, even

with advancements in surgical techniques and perioperative

care, some patients may develop postoperative complica-

tions, including adhesive small bowel obstruction (ASBO).

ASBO frequently occurs following abdominal surgery),4-6

such as that for intestinal malrotation. It is caused by fibrous

bands, known as adhesions, forming between abdominal

organs and tissues. These adhesions can lead to intestinal

obstruction through compression or torsion of the bowel,

producing symptoms like abdominal pain, distension, and

emesis. The incidence of ASBO post-surgery for intestinal

malrotation ranges from 8 % to 29 %.7-12

Diagnosing ASBO currently relies heavily on clinical judg-

ment and imaging techniques).13,14 However, these methods

have limitations in specificity and can be challenging due to

the subtle presenting symptoms in infants. Consequently,

there is growing interest in using machine learning algo-

rithms to enhance diagnostic accuracy and support decision-

making in the early identification of ASBO.

Machine learning models, which have become increas-

ingly popular in various fields, offer advantages over tradi-

tional statistical analysis methods. They can analyze

nonlinear relationships between data, proving beneficial in

disease diagnosis, subtype identification, and biomarker dis-

covery).15-17 Random forest is a machine learning algorithm

that uses an ensemble of decision trees to make predictions.

Each decision tree in the “forest” works independently, ana-

lyzing different parts of the data to classify outcomes or

make predictions. The final result is determined by combin-

ing the outputs of all the trees.

This study aims to apply a random forest algorithm to

develop a predictive model for early identification of ASBO

in infants under three months who have undergone surgery

for intestinal malrotation. By analyzing a range of clinical

parameters, the goal is to establish a model that effectively

predicts the likelihood of ASBO. This will aid in timely clini-

cal decision-making, optimize patient management, and

ultimately improve outcomes for this vulnerable patient

group.

Material and methods

This study’s framework, depicted in Figure 1, includes three

main parts: data preparation, model building, and model

visualization and evaluation.

Patient selection

Patients treated at the Children’s Hospital of Chongqing

Medical University from January 2012 to December 2020

were enrolled in this study. All participants were diagnosed

with intestinal malrotation and had undergone surgery. They

were followed up for at least two years postoperatively,

with categorization based on the occurrence of ASBO. The

Ethics Committee of the Children’s Hospital of Chongqing

Medical University approved this study (File No 57�2, 2022).

Inclusion and exclusion criteria

The study included patients aged under three months, defin-

itively diagnosed with intestinal malrotation, and who had

undergone Ladd’s procedure at the hospital. Exclusion crite-

ria encompassed patients with incomplete clinical data,

those who discontinued treatment or left the hospital volun-

tarily, and those with less than two years of follow-up.

Definition of ASBO

Adhesive small bowel obstruction (ASBO) is characterized by

symptoms such as vomiting, abdominal pain, and distension.

Its diagnosis is confirmed by abdominal X-rays showing signif-

icant intestinal loop dilation and air-fluid levels. ASBO com-

monly results from fibrous adhesions in the small intestine,

often occurring after abdominal surgeries.

Predictor variables

The present study carefully selected a wide range of factors

for a comprehensive analysis that includes both clinical

observations and laboratory data. Factors considered

include the rotation angle observed during surgery, and

demographic and physiological data like gender, age in days,

mode of delivery, birth weight, and admission weight. Surgi-

cal evaluation focused on the duration of the procedure,

while postoperative care included mechanical ventilation

duration (MV duration). Laboratory analysis, covering both

preoperative and postoperative periods, involved parame-

ters such as white blood cell count (WBC), neutrophil-to-

lymphocyte ratio (NLR), red blood cell count (RBC), hemo-

globin (HB), platelet count (PLT), C-reactive protein (CRP),

total bilirubin (TBIL), and blood urea nitrogen (BUN), with

postoperative values collected between 5 and 7 days after

surgery. The liver function test enzyme index (LFTEI) was

calculated from alanine aminotransferase (ALT) and aspar-

tate aminotransferase (AST) levels and the time to start oral

feeding (SOF) was recorded as an indicator of postoperative

recovery.

Feature selection

In this study, the authors used the Boruta algorithm for fea-

ture selection to identify significant predictors of ASBO in

patients with intestinal malrotation. Designed for high-
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dimensional datasets, the Boruta algorithm creates shadow

features by generating random copies of the original fea-

tures. It then compares the importance of each real feature

to these shadow features using a random forest classifier.

Features less important than the most significant shadow

feature are iteratively removed, ensuring that only those

with statistically significant contributions to the model’s

predictive power are retained.

Parameter tuning

After feature selection, the authors utilized the random for-

est algorithm for modeling, to optimize the random forest

model, we applied a nested cross-validation approach com-

bined with grid search. This approach addresses the chal-

lenges posed by the limited sample size. Instead of

partitioning the dataset into distinct training and testing

Figure 1 Architecture of the framework of this study.
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sets, the authors implemented 4-fold cross-validation in

both the inner and outer loops of the nested procedure. This

approach provides a robust estimate of model performance

by evaluating various parameter combinations across differ-

ent data subsets.

In the inner loop, grid search systematically explored

parameter settings, with each configuration evaluated

through 4-fold cross-validation. The results were visualized

using heatmaps, facilitating the identification of optimal

parameter combinations based on performance metrics.

This method minimizes the risk of overfitting by ensuring the

selected parameters generalize effectively across the entire

dataset, thereby enhancing predictive performance.

Model visualization and evaluation

The authors employed feature importance metrics and par-

tial dependence plots to visualize and interpret the model.

Feature importance metrics identified variables significantly

influencing predictions, while partial dependence plots illus-

trated the effects of key features on the model’s output. To

further enhance interpretability, the authors visualized six

individual trees from the random forest model, providing

insights into the contributions of different trees to the final

predictions.

For model evaluation, the authors applied a bootstrap

method with 1000 replications, yielding reliable estimates

of accuracy, sensitivity, specificity, F1 score, and the area

under the ROC curve (AUC). The ROC curve analysis assessed

the model’s ability to discriminate between classes, serving

as a robust diagnostic tool. Together, these visualization and

evaluation techniques ensured the robustness and reliability

of the model.

Statistical analysis and software tools

Continuous variables were presented as mean § standard

deviation (SD) or median (p25, p75), depending on their dis-

tribution. Categorical variables were expressed as numbers

and percentages. The authors used the t-test or Wilcoxon

rank-sum test for continuous variables, and the chi-square

test for categorical variables, based on data distribution.

Descriptive statistics and data management were per-

formed using IBM SPSS Statistics (version 27). Feature selec-

tion with the Boruta algorithm was conducted in R using the

‘Boruta’ package (version 4.3.1). Random forest modeling,

visualization, and evaluation were carried out in Python

(version 3.11).

Results

In this study, 107 infants were included. Table 1 presents the

demographic and clinical characteristics of both the non-

ASBO (n = 87) and ASBO (n = 20) groups. Notably, there is a

female majority in both groups, with a higher percentage of

females in the ASBO group. A significant finding is the longer

duration of surgery in the ASBO group compared to the non-

ASBO group. Correspondingly, the ASBO group required

extended MV duration postoperatively. Hematological analy-

sis revealed significant changes in specific blood parameters

when comparing pre-and post-operative values in both

groups. Particularly, the ASBO group exhibited a substantial

postoperative increase in WBC, potentially indicating a

stronger inflammatory or stress response to surgery. Addi-

tionally, the NLR, another critical systemic inflammation

indicator, was notably higher in the ASBO group after

surgery.

Utilizing the Boruta algorithm with parameters “max-

Runs = 100”, and “p-Value = 0.01”, optimal features were

selected for predicting the target variable. Supplementary

Figure S1 displays these results: the x-axis lists the evalu-

ated features, and the y-axis shows their importance.

Shadow attributes’ importance, a baseline metric for fea-

ture selection derived from the algorithm, is depicted by

three blue boxplots showing their minimum, mean, and max-

imum values. Significant features included in the model are

highlighted in green, while those excluded are shown in red.

Yellow boxplots represent tentative features, with no defini-

tive recommendation from the algorithm for their inclusion

or exclusion. Of the 29 variables analyzed, 6 were identified

Table 1 Demographic and clinical characteristics.

non-ASBO, n = 87 ASBO, n = 20

gender

male 21 (24.1 %) 2 (10 %)

female 66 (75.9 %) 18 (90 %)

mode of delivery

vaginal delivery 28 (32.2 %) 10 (50 %)

cesarean section 59 (67.8 %) 10 (50 %)

rotation angle,

degree

360 (360,540) 540 (360,675)

days of age 8 (3,17) 7.5 (5,28)

birth weight, kg 3.21 (2.90,3.50) 3.29 (3.00,3.45)

admission weight,

kg

3.05 (2.70,3.60) 3.09 (2.72,3.98)

surgery duration,

minutes

65 (50,80) 108 (75,139)

MV duration, hours 5.5 (3.6,11.4) 15.9 (11.6,21.6)

pre-WBC, *10^9/L 6.6 (4.9,8.9) 9.7 (7.8,14.5)

pre-NLR 1.33 (0.98,2.14) 1.92 (1.22,2.7)

pre-RBC, *10^12/L 3.7 (3.2,4.2) 3.5 (3.1,3.8)

pre-HB, g/L 122 (108,137) 116 (100,132)

pre-PLT, *10^9/L 330 (247,420) 346 (224,426)

pre-CRP, mg/L 4 (4,4) 4 (4,4)

pre-TBIL, mmol/L 127.8

(51.9,179.7)

140.9

(70.5,185.5)

pre-LFTEI, U/L 47.3 (39.6,61.1) 48.3 (40.7,65.5)

pre-ALB, g/L 28.9 (23.4,34.0) 33.0 (29.0,36.2)

pre-BUN, mmol/L 3.4 (2.4,5.1) 5.0 (3.8,7.0)

time to SOF, days 6 (4,7) 7 (5,8)

post-WBC, *10^9/L 6.5 (5.0,7.8) 10.0 (7.7,13.1)

post-NLR 1.12 (0.81,1.76) 1.16 (0.91,1.80)

post-RBC, *10^12/L 3.4 (3.1,3.7) 3.2 (3.0,3.8)

post-HB, g/L 111 (99,121) 109 (95,120)

post-PLT, *10^9/L 380 (276,480) 409 (322,450)

post-CRP, mg/L 4 (4,4) 4 (4,4)

post-TBIL, mmol/L 45.1 (15.5,113.1) 76.9 (34.6,120.2)

post-LFTEI, U/L 43.1 (36.2,56.0) 54.4 (37.4,100.3)

post-ALB, g/L 38 (35,42) 34 (32,37)

post-BUN, mmol/L 5.2 (3.6,6.5) 5.3 (3.6,7.9)
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as significant, 1 remains tentative, and 22 were excluded.

The significant features are surgery duration, MV duration,

pre-operative WBC, pre-operative BUN, post-operative

LFTEI, and post-operative ALB, all contributing notably to

the model’s predictive accuracy.

Supplementary Figure S2 demonstrates the application of

nested cross-validation and grid search methods for select-

ing the optimal hyperparameter combination for the model,

which was determined to be “max_depth = 2” and “n_esti-

mators = 80”. This combination achieved a model accuracy

of 0.9004. Furthermore, the random forest model was con-

figured with the “class_weight” set to ‘balanced’ and the

“criterion” set to “entropy”, with all other parameters at

their default settings.

After finalizing the optimal hyperparameter settings, a

random forest model was constructed. The feature impor-

tance graph (Figure 2) displays the relative significance of

each variable in the model. Pre-operative white blood cell

count (pre-WBC) is the most influential feature with an

importance score of approximately 0.297, highlighting its

strong predictive power. The second most significant predic-

tor is mechanical ventilation duration (MV duration), scoring

around 0.23. Surgery duration follows with an importance

score of 0.167, and post-operative albumin levels (post-ALB)

also contribute notably with a score of 0.138. Pre-operative

blood urea nitrogen (pre-BUN) and post-operative liver func-

tion test enzyme index (post-LFTEI) have importance scores

of 0.088 and 0.08, respectively, indicating their meaningful

but lesser impact.

The partial dependence plots (PDPs, Supplementary

Figure S3) illustrate the relationships between predictor

variables and the model’s predictions. It is important to

note that PDPs assume the independence of the predictor

variable being analyzed from all other predictors in the

model. Both surgery duration and MV duration show an

increasing influence on the model’s output, with MV duration

plateauing after 10 h, indicating a threshold effect. Pre-WBC

levels sharply increase in impact up to a certain point, sug-

gesting a strong influence within specific ranges. Pre-BUN

demonstrates a consistent, gradual influence, while post-

LFTEI’s impact increases up to a certain level and then sta-

bilizes. Notably, post-ALB levels display a non-linear effect,

indicating a complex interaction with the outcome, where

only specific ranges significantly alter the prediction. These

patterns underscore the nuanced contribution of each clini-

cal factor to the predictive model.

The random forest model, comprising 80 decision trees, is

exemplified by six trees in Supplementary Figure S4, provid-

ing insight into the model’s decision-making process. These

trees indicate that features such as pre-WBC, surgery dura-

tion, and MV duration are key splitting factors, signifying

their substantial role in the model.

The ROC curve (Figure 3), derived from 1000 bootstrap

replications, assesses the model’s discriminative ability. The

mean ROC curve, shown by the blue line, demonstrates an

excellent ability to differentiate between positive and nega-

tive classes with an AUC of 0.96 § 0.02, indicative of out-

standing model performance. The grey area around the

mean ROC curve, representing the 95 % confidence interval,

reflects the precision of the AUC estimation. The curve’s

proximity to the top left corner and its elevation above the

diagonal red dashed line underscore the model’s strong

Figure 2 Feature importance ranking for ASBO prediction in random forest model.
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predictive accuracy. The narrow confidence interval high-

lights the stability and consistency of the model across dif-

ferent samples. Sensitivity, specificity, precision, and F1

score, along with their 95 % confidence intervals, are

detailed in Supplementary Table S1.

Discussion

This study represents a significant leap in the application of

machine learning technology, specifically the random forest

algorithm, for predicting postoperative complications in

pediatric surgery. By leveraging this advanced algorithm,

the authors have been able to dissect a complex array of

clinical and laboratory data, enhancing the understanding of

risk factors associated with ASBO following intestinal malro-

tation surgery in infants. This is in line with the recent trend

of applying machine learning models to various aspects of

surgical care, such as postoperative pain,18 wound infec-

tion,19 and mortality.20 However, to the best of our knowl-

edge, this is the first study to use the random forest

algorithm for predicting ASBO in pediatric patients, which is

a challenging and clinically relevant problem.

The random forest model excels in handling multifaceted

and non-linear data, typical challenges in clinical

research.21 This enables accurate identification of key

predictive variables, ranging from surgical duration to bio-

chemical markers like pre-operative white blood cell count

(pre-WBC) and post-operative albumin levels (post-ALB).

Utilizing this method for risk prediction not only improves

the understanding of postoperative courses but also aids in

developing early intervention strategies. Previous studies

have shown that early operative management of ASBO can

be cost-effective and reduce the risk of recurrence and com-

plications.22 However, the optimal timing and indications for

surgery are still controversial and depend on various factors,

such as the presence of strangulation, ischemia, or peritoni-

tis.13 Therefore, having a reliable and robust predictive

model can help surgeons to make informed decisions and tai-

lor the treatment to individual patients. Additionally, the

present study fills a significant gap in existing literature by

focusing on the early prediction of ASBO in a previously

underexplored demographic: infants undergoing intestinal

malrotation surgery. The present research provides essential

insights into postoperative risks for these young patients and

offers a valuable predictive tool for clinicians to identify and

manage ASBO early, which is crucial considering the vulnera-

bility of this patient group and the potential for improved

outcomes through early detection and intervention. The

incidence of ASBO after laparotomy during infancy is

reported to be between 1 and 12.6 %,23 and it can cause sig-

nificant morbidity and mortality, especially in cases of

Figure 3 Bootstrap aggregate roc curve for ASBO prediction model performance.
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recurrent volvulus or necrotizing enterocolitis.6 Therefore,

it is imperative to identify the risk factors and preventive

measures for ASBO in this population, as well as to monitor

and treat them promptly if they occur.

The present research involved a retrospective analysis of

clinical parameters from patients under three months old,

focusing on key variables including pre-WBC, MV duration,

surgery duration, and post-ALB. The model exhibited high

diagnostic accuracy with an AUC of 0.960, indicating its

potential for early identification of patients at risk for ASBO.

There are four variables with a feature importance greater

than 10 %, pre-WBC, MV duration, surgery duration, and post-

ALB. Elevated preoperative pre-WBC levels are indicative of a

preoperative inflammatory state, potentially increasing the

risk of postoperative complications such as ASBO. This under-

lines the importance of managing preoperative inflammation

to mitigate such risks. Studies have consistently shown a strong

correlation between preoperative leukocyte elevation or infec-

tion status and the occurrence of postoperative complications.

For instance, Mahmood et al.24 found in cardiac surgery

patients that elevated preoperative white blood cells were sig-

nificantly associated with increased risks of 30-day mortality,

wound complications, and other medical complications. Simi-

larly, research focusing on risk factors for early postoperative

ileus in elective colorectal surgery patients identified that vari-

ables like preoperative antibiotic use and the duration of anti-

biotic treatment were linked to a heightened risk of early

postoperative ileus.25 These findings suggest that such factors

might serve as indirect indicators of the effects of preoperative

infection status on postoperative outcomes.

The present research reveals a direct correlation

between the duration of surgery and the increased risk of

ASBO. Prolonged surgical procedures often indicate a higher

level of complexity or extensiveness, leading to more signifi-

cant tissue damage and enhanced inflammatory responses.

It has been established through studies that these inflamma-

tory responses, resulting from tissue damage and the surgi-

cal process, can potentially trigger the formation of

adhesions.26,27 Additionally, these postoperative adhesions

are integrally associated with the body’s healing mecha-

nisms for damaged tissue, therefore, the development of

adhesions is part of the body’s natural response to surgical

trauma, serving to heal and safeguard the affected area.28

The present study shows that prolonged postoperative MV

use is associated with an increased incidence of ASBO.

Research indicates that mechanical ventilation, particularly

at high positive end-expiratory pressures, can diminish

splanchnic perfusion. This reduction in blood flow, especially

in the splanchnic area encompassing the gastrointestinal

tract, significantly impacts gastrointestinal function.29 Con-

sequently, prolonged MV after surgery is often indicative of a

complex recovery process, heightening the risk of delayed

bowel function and ASBO. Therefore, it is essential to limit

the duration of MV to mitigate the risk of ASBO. Moreover,

lower ALB levels post-surgery poses an additional risk,

potentially worsening postoperative complications.30 A

decline in ALB levels may reflect either compromised nutri-

tional status or systemic inflammation, both detrimental to

the healing process. Such decreases in ALB levels are fre-

quently indicative of the body’s stress response to surgery,

which can amplify the likelihood of complications like ASBO

by impairing immune function and delaying tissue repair.

However, this study’s limitations include a modest sample

size, its retrospective design, and data sourced from a single

medical center. While the bootstrap method strengthens the

present model’s validation, further external validation in a

broader, independent patient population is needed. The

small sample size and single-center context limit the mod-

el’s generalizability and the ability to establish causation.

Future research should incorporate larger, multi-center, pro-

spective studies to enhance data diversity, improve gener-

alizability, and allow for more controlled data collection.

Prospective studies are crucial for validating predictive

models and establishing causal relationships. Integrating

this model into various clinical settings will require adapt-

ability across different patient populations. Future efforts

should aim at refining the model for wider pediatric surgical

contexts and maintaining transparency in its predictive pro-

cesses for effective clinical decision-making.

In conclusion, this study introduces a promising machine

learning-based method to predict ASBO in infants with intes-

tinal malrotation post-surgery. The model’s high accuracy

and robust performance metrics underscore its potential in

clinical decision-making, aiming to enhance patient man-

agement and improve outcomes in this vulnerable group.

Future studies are necessary to validate and integrate this

model into clinical workflows, thereby improving precision

in pediatric surgical care.
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